Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: Cosmos-Reason1是NVIDIA推出的多模态大语言模型系列,具备物理常识理解和具身推理能力,支持视频输入和长链思考,可应用于机器人、自动驾驶等场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🤖 「别让AI成物理文盲!英伟达给机器装上『常识脑』」

大家好,我是蚝油菜花。这些AI犯的物理错误你是否见过——

  • 👉 让机器人取餐盘,结果直接撞翻整桌餐具(牛顿棺材板按不住了)
  • 👉 自动驾驶遇暴雨,决策逻辑比驾校新生还懵圈
  • 👉 工业机械臂抓取时,完全无视摩擦力存在的玄学操作...

今天要重塑AI三观的 Cosmos-Reason1 ,正在重写智能边界!英伟达这剂「物理强心针」:

  • ✅ 牛顿附体:56B参数模型内置重力/惯性/时空法则数据库
  • ✅ 决策透视镜:长链思考过程可视化,每个动作都有物理依据
  • ✅ 机器人大脑:视频输入+具身推理,让机械臂学会「肌肉记忆」

已有工厂用它训练零事故机械臂,自动驾驶靠物理常识预判极端路况——你的AI,是时候补上「宇宙生存必修课」了!

🚀 快速阅读

Cosmos-Reason1是NVIDIA推出的具备物理常识推理能力的多模态大语言模型。

  1. 核心功能:支持物理常识理解、具身推理、长链思考和多模态输入处理
  2. 技术原理:采用层次化本体论设计、多模态架构和四阶段训练流程

Cosmos-Reason1 是什么

cosmos-reason1

Cosmos-Reason1 是 NVIDIA 推出的系列多模态大型语言模型,基于物理常识和具身推理理解物理世界。Cosmos-Reason1包括两个模型:Cosmos-Reason1-8B 和 Cosmos-Reason1-56B。

模型基于视觉输入感知世界,经过长链思考后生成自然语言响应,涵盖解释性见解和具身决策(如下一步行动)。训练分为四个阶段:视觉预训练、通用监督微调、物理 AI 微调和强化学习。Cosmos-Reason1基于精心策划的数据和强化学习,在物理常识和具身推理基准测试中表现出色。

Cosmos-Reason1 的主要功能

  • 物理常识理解:理解物理世界的基本知识,如空间、时间和基础物理定律,判断事件的合理性。
  • 具身推理:基于物理常识,为具身代理(如机器人、自动驾驶车辆)生成合理的决策和行动规划。
  • 长链思考:基于长链思考(chain-of-thought reasoning)生成详细的推理过程,提升决策的透明度和可解释性。
  • 多模态输入处理:支持视频输入,结合视觉信息和语言指令进行推理,生成自然语言响应。

Cosmos-Reason1 的技术原理

  • 层次化本体论:定义物理常识的层次化本体论,涵盖空间、时间和基础物理三个主要类别,进一步细分为16个子类别。
  • 二维本体论:为具身推理设计二维本体论,涵盖五种具身代理的四种关键推理能力。
  • 多模态架构:基于解码器仅多模态架构,输入视频基于视觉编码器处理后,与文本标记嵌入对齐,输入到LLM中。
  • 模型四个训练阶段
    • 视觉预训练:对视觉和文本模态进行对齐
    • 通用监督微调(SFT):提升模型在通用视觉语言任务中的表现
    • 物理AI SFT:用专门的数据增强物理常识和具身推理能力
    • 物理AI强化学习(RL):基于规则化奖励进一步优化模型的推理能力
  • 强化学习:设计基于多选题的规则化奖励机制,基于强化学习提升模型在物理常识和具身推理任务中的表现。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
UniRig是清华大学与VAST联合研发的自动骨骼绑定框架,基于自回归模型与交叉注意力机制,支持多样化3D模型的骨骼生成与蒙皮权重预测,其创新的骨骼树标记化技术显著提升动画制作效率。
351 27
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
|
2月前
|
机器学习/深度学习 人工智能 算法
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
Skywork-R1V 2.0是昆仑万维最新开源的多模态推理模型,通过混合强化学习和多模态奖励模型实现复杂推理任务,在理科题目解答和科研分析中展现出色性能。
288 11
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
|
2月前
|
机器学习/深度学习 人工智能 编解码
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
588 9
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
|
2月前
|
人工智能 搜索推荐
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
SocioVerse是由复旦大学联合小红书等机构开源的社会模拟框架,基于大语言模型和千万级真实用户数据构建,能精准模拟群体行为并预测社会事件演化趋势。
151 2
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
|
2月前
|
人工智能 编解码 算法
AI生成视频告别剪辑拼接!MAGI-1:开源自回归视频生成模型,支持一镜到底的长视频生成
MAGI-1是Sand AI开源的全球首个自回归视频生成大模型,采用创新架构实现高分辨率流畅视频生成,支持无限扩展和精细控制,在物理行为预测方面表现突出。
322 1
AI生成视频告别剪辑拼接!MAGI-1:开源自回归视频生成模型,支持一镜到底的长视频生成
|
2月前
|
人工智能 算法 API
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
上海人工智能实验室开源的InternVL3系列多模态大语言模型,通过原生多模态预训练方法实现文本、图像、视频的统一处理,支持从1B到78B共7种参数规模。
310 6
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
|
2月前
|
数据采集 人工智能 自动驾驶
从虚拟到现实!Aether:上海AI Lab开源的生成式世界模型,4D动态重建+视觉规划全搞定
Aether是上海AI Lab开源的生成式世界模型,通过三维时空建模与生成式建模的深度融合,实现了4D动态重建、动作条件视频预测和目标导向视觉规划三大核心能力。
145 1
从虚拟到现实!Aether:上海AI Lab开源的生成式世界模型,4D动态重建+视觉规划全搞定
|
2月前
|
人工智能 自然语言处理 监控
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
微软开源的MAI-DS-R1是基于DeepSeek R1改进的AI模型,通过后训练优化将敏感话题响应率提升至99.3%,同时将有害内容风险降低50%,保持原版推理能力并增强多语言支持。
283 3
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI 搜索开放平台重磅发布:Qwen3 模型上线啦
阿里云AI搜索开放平台重磅发布最新Qwen3模型,为企业和开发者提供全栈智能搜索解决方案。Qwen3作为最新一代大模型,在推理、多语言支持和Agent能力上表现卓越。用户可通过三步快速体验Qwen3服务,助力业务在AI时代抢占先机。
268 12
|
2月前
|
存储 人工智能 边缘计算
当 AI 进入「算力密集时代」:你的服务器能跑通大模型吗?
本文深入探讨AI服务器在技术落地中的核心瓶颈问题,结合实战经验解析从模型训练到端侧部署的算力优化策略。内容涵盖三大典型场景的算力需求差异、GPU服务器选型的五大反直觉真相、实战优化方法(如混合精度训练与硬件资源监控),以及边缘AI部署挑战和解决方案。同时提供算力弹性扩展策略、模型生命周期管理及合规性建议,帮助读者构建可持续发展的算力体系。文末附有获取更多资源的指引。
128 17

热门文章

最新文章

下一篇
oss创建bucket